In audit sampling one might want to find a sufficient sample size n for which, when k* errors occur, the most likely error MLE equals the expected error EE and the maximum error ME equals the tolerated error TE, using a Poisson distribution.

When evaluating such a sample, we know that:

(1) MLE =
$$k^* J$$

(2)
$$ME = R(k^*) J$$

Where J is the selection interval and $R(k^*) = GAMMA.INV.N(confidence level; k^*+1;1)$

Setting MLE equal to EE and ME equal to TE, (1) and (2) yield:

(3) k*= (EE / TE) R(k*)

The value of k^* can be found by interpolation. For round numbers, a chart with k, R(k) and k/R(k) can be made. For example, using 95% confidence, this chart looks like:

k	R(k)	k/R(k)
0	3,00	0%
1	4,75	21%
2	6,30	32%
3	7,76	39%
4	9,16	44%
5	10,52	48%

So, for example, when TE = 2% and EE = 0,42%, $k^* = 1$ and n will be n = 4,75 M / TE. But what is the best strategy when EE = 0,3%? Or 0,8%? In such cases, we need interpolation after deciding for which pair (k, k+1) we know that:

When k < k* < k+1 then k / R(k) < k* / R(k*) < (k+1) / R(k+1)

Now since AB/AC = BD/CE we have:

- (4) $(k^{*}-k) / {(k+1)-k} = {R(k^{*}) R(k)} / {R(k+1) R(k)}$
- (5) $k^* = k + {R(k^*) R(k)} / {R(k+1) R(k)}$

Combining (3) and (5):

(6) (EE / TE) $R(k^*) = k + {R(k^*) - R(k)} / {R(k+1) - R(k)}$

Which leads to:

(7) $R(k^*) = [R(k)-k \{R(k+1) - R(k)\}] / [1-(EE / TE) \{R(k+1) - R(k)\}]$

Sample size n can be derived as $n = R(k^*) M / TE$

(8) $n = M [R(k) - k \{R(k+1) - R(k)\}] / [TE-EE \{R(k+1) - R(k)\}]$

and the interval J = M / n is:

(9) $J = [TE-EE {R(k+1) - R(k)}] / [R(k)-k {R(k+1) - R(k)}]$

Note that when k = 0, n = 3 M / (TE-1,75 EE). Using k = 0 for when EE / TE > 21% (and thus, interpolation should be based on k > 0) will largely overestimate sample size but is conservative and, therefore, not wrong.