In audit sampling one might want to find a sufficient sample size n for which, when k^{*} errors occur, the most likely error MLE equals the expected error EE and the maximum error ME equals the tolerated error TE, using a Poisson distribution.

When evaluating such a sample, we know that:
(1) $M L E=k^{*} J$
(2) $M E=R\left(k^{*}\right) J$

Where J is the selection interval and $R\left(k^{*}\right)=$ GAMMA.INV.N(confidence level; $k^{*}+1 ; 1$)
Setting MLE equal to EE and ME equal to TE, (1) and (2) yield:
(3) $k^{*}=(E E / T E) R\left(k^{*}\right)$

The value of k^{*} can be found by interpolation. For round numbers, a chart with $k, R(k)$ and $\mathrm{k} / \mathrm{R}(\mathrm{k})$ can be made. For example, using 95% confidence, this chart looks like:

k	$R(k)$		$k / R(k)$
0	3,00	0%	
1	4,75	21%	
2	6,30	32%	
3	7,76	39%	
4	9,16	44%	
5	10,52	48%	

So, for example, when $T E=2 \%$ and $E E=0,42 \%, k^{*}=1$ and n will be $n=4,75 M / T E$.
But what is the best strategy when $\mathrm{EE}=0,3 \%$? $\mathrm{Or} 0,8 \%$? In such cases, we need interpolation after deciding for which pair ($k, k+1$) we know that:

When $k<k^{*}<k+1$ then $k / R(k)<k^{*} / R\left(k^{*}\right)<(k+1) / R(k+1)$

Now since $A B / A C=B D / C E$ we have:
(4) $\left(k^{*}-k\right) /\{(k+1)-k\}=\left\{R\left(k^{*}\right)-R(k)\right\} /\{R(k+1)-R(k)\}$
(5) $\mathrm{k}^{*}=\mathrm{k}+\left\{\mathrm{R}\left(\mathrm{k}^{*}\right)-\mathrm{R}(\mathrm{k})\right\} /\{\mathrm{R}(\mathrm{k}+1)-\mathrm{R}(\mathrm{k})\}$

Combining (3) and (5):
(6) (EE / TE) $R\left(k^{*}\right)=k+\left\{R\left(k^{*}\right)-R(k)\right\} /\{R(k+1)-R(k)\}$

Which leads to:
(7) $R\left(k^{*}\right)=[R(k)-k\{R(k+1)-R(k)\}] /[1-(E E / T E)\{R(k+1)-R(k)\}]$

Sample size n can be derived as $n=R\left(k^{*}\right) M / T E$
(8) $n=M[R(k)-k\{R(k+1)-R(k)\}] /[T E-E E\{R(k+1)-R(k)\}]$
and the interval $\mathrm{J}=\mathrm{M} / \mathrm{n}$ is:
(9) $J=[T E-E E\{R(k+1)-R(k)\}] /[R(k)-k\{R(k+1)-R(k)\}]$

Note that when $k=0, n=3 M /(T E-1,75 E E)$. Using $k=0$ for when EE / TE > 21% (and thus, interpolation should be based on $k>0$) will largely overestimate sample size but is conservative and, therefore, not wrong.

